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1. Introduction 

1.1. Background  

Neural networking has thus become an important technique in artificial intelligence (AI) because of its 

ability in relational determination on data. These networks drawing their paradigms from the human 

brain have greatly transformed such fields as computer vision, natural language processing, and 

autonomous systems. However, the training of neural networks is still computationally expensive even 

for today’s commodity hardware, no matter how much simpler networks become more complex and 

deep. This is due to the fact that it is occasionally necessary to fine-tune millions or even billions of 

parameters, and this is accomplished through learning procedures.An integral part of this learning is the 

optimization of a cost function or error function, and in this we most frequently use gradient-based 

methods. 

The process is optimized by gradient descent, which describes the method of updating the 

parameters of the neural network in the direction yielding the minimum error. However, the case of 

gradient descent algorithms has some parameters that determine its effectiveness, such as the data size, 

number of layers in neural networks, and even a learning rate. In addition to that, traditional gradient 

descent methods are associated with problems of slow convergence, local optimum avoidance, and 

convergence in the area of saddle points. These problems have brought different gradient descent 

variants seeking to optimize the performance of neural network training. 

1.2. Gradient Descent Overview 

This is actually one of the easiest and most frequently used optimisation methods of training neural 

networks; it is called the gradient descent algorithm. It works regarding the update of the model 

parameters in light of an estimate for negative the cost gradient at every iteration. Mathematically, this 

update rule can be stated as: 

ωt+1 = ωt – Ƞ ∇ J(ωt) 

where ωt is the parameters of the model in the tth time step, Ƞ is defined as learning rate and ∇ J(ωt) is 

defined as gradient of the cost function.  Though this method is easier, for big data set it consumes a lot 

of time because in each iteration the gradient for the entire set is to be computed. However, gradient 

descent always faces difficulty in finding the optimal solution in the cases of high-dimensional loss 

functions with numerous local minima and saddle points particularly while training of deep neural 
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networks. These shortcomings have given rise to several versions of gradient descent that seeks to 

address some shortcomings experienced in the standard gradient descent.  

1.3.  Problem Statement 

Although it's straightforward and efficient, vanilla gradient descent has been mainly proved inefficient 

in training large-scale or very deep neural networks: its tendency to get stuck in local optima, slow 

convergence rates, and sensibility to hyper parameters like the learning rate sharply deteriorate its 

performance. Several gradient descent variants — like Stochastic Gradient Descent (SGD), Momentum, 

AdaGrad, RMSProp, and Adam — have been proposed in time to overcome these limitations. However, 

comprehensive studies are required for comparing such variants systematically in terms of efficiency 

across different architectures of neural networks and datasets. 

Filling the gap, this research paper undertakes an investigation into the efficiency of different 

gradient descent variants in identifying which among these optimizers provide the best tradeoff between 

convergence speed, accuracy, and computational efficiency during the training of neural networks. 

1.4. Purpose of the Study 

The purpose of this paper is to compare and evaluate the performance of several variants of gradient 

descent on training neural nets. So, this research has primarily been conducted based on several 

experiments carried out on both simple and complex neural network architectures so that it may be 

decided which are the optimizers best suited for which types of networks and datasets. Findings will 

prove useful for practitioners and researchers in AI, guided by such examples of choosing a gradient 

descent method applied to specific tasks. 

1.5. Research Questions 

This paper will follow through the following research questions: 

• Which type of learning converges the fastest to a high-accuracy solution of a neural network 

training problem? 

• How do the various gradient descent variants address local minima, saddle points, and flat 

regions issues in loss landscape? 

• Discuss how the hyper parameters-the learning rate and batch size, for instance-make a 

difference to these variants, and how one might tune those hyper parameters to optimize performance. 

1.6. Structure of the Paper 

The paper is divided into six sections. After the current introduction, Section 2 is a review of relevant 

literature about variants of gradient descent summarizing the usual applications in neural network 

training. In Section 3, the methodology of the study is discussed containing datasets and architectures 

designed to perform neural network experiments as well as some evaluation metrics. Experimental 

results are shown in Section 4 with accurate comparison between the variants of gradient descent. 

Section 5 elaborates on the implications of the study, and Section 6 summarizes the overall findings, 

followed by a call for future research directions. 

2.  Literature Review 

2.1. Overview of Gradient Descent 

The gradient descent algorithm, perhaps one of the most important optimization techniques in history, 

originally was developed as a general optimization technique that is today perhaps most closely 

associated with the training of neural networks. It follows an iterative approach toward the minimization 
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of a cost function: adjusting parameters such that the procedure moves in the direction of steepest 

descent. 

Gradient descent can be broadly divided into three categories: Batch gradient descent makes 

use of the entire dataset in the computation of gradients; hence, it is expensive to run for very large 

datasets but its convergence is stable. In contrast, SGD employs only one sample to calculate gradients 

in each iteration, implying noisy but faster updates. Mini-batch gradient descent is an intermediary 

method between SGD, where the learning is done on a small subset of the data, and batch gradient 

descent, therefore learning parameters based on a small subset of the data. It combines the efficiency of 

SGD with the stability of batch gradient descent. 

2.2. Stochastic Gradient Descent (SGD) 

Another very popular variation of gradient descent - actually even more frequently used than the 

Nesterov-accelerated gradient descent, for example, when training deep neural networks - is SGD. The 

model's parameters are updated after every datapoint or batch, that is, the updates are more frequent and 

so is the learning. This noise in the optimization process produces a much noisier convergence path 

than with batch gradient descent. This process is unstable in its convergence, yet it is highly used since 

SGD is computationally efficient and likely to escape from local minima due to the noise from random 

gradients. 

2.3.  Momentum-Based Gradient Descent 

Momentum is essentially the extension of gradient descent which in its turn tends to speed up 

convergence by adding a fraction of the previous step, in other words a part of the update in the current 

update. This thus smoothes the optimization path and decreases oscillations within the descent, making 

it very suitable for navigating ravines, areas in the loss landscape with steep walls and flat bottoms. 

Momentum is mathematically defined as: 

Vt+1 = γvt+Ƞ∇ J(ωt) 

Where Vt is the velocity vector which is the cummulated gradient, γ the momentum coefficient that lies 

between 0.5 to 0.9 normally and Ƞ is learning rate. Through previous gradients, momentum helps speed 

optimization when the gradients point in the same directions continuously. 

2.4.  Nesterov Accelerated Gradient (NAG) 

NAG is the refinement of the momentum method providing a "look-ahead" mechanism. Instead of 

computing the gradient at the current parameter position, NAG computes the gradient after a step in the 

direction of the accumulated momentum. That anticipatory update facilitates the adjustment in the path 

of the trajectory such that it never overshoots the minimum: thus improving convergence speed and 

accuracy. 

2.5.  Adaptive Gradient Methods: AdaGrad, RMSProp, Adam 

Adaptive gradient methods that are UTIs important in training deep neural networks have overtime 

taken a seat at the forefront. They are Stochastic Gradient Descent, AdaGrad, AdaDelta, and RMSProp, 

in which the learning rate for the parameters is determined by the gradients of those parameters with 

history.  

• AdaGrad: AdaGrad is an adaptation of the gradient descent algorithm that adjusts the step size 

proportionate to the parameter. Therefore, it's the best algorithm used for sparse data. It is having the 
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problem that it adds the squared gradients over time and the learning rate decreases throughout iterations 

and may stall in the optimizer in the latter epochs of training.  

•  RMSProp: Thus, to overcome the diminishing learning rate problem of AdaGrad, RMSProp 

keeps moving the average of the squared gradients. This method is most suitable in circumstances 

whereby the cost functions are not stationary and their characteristics fluctuate with time.  

• Adam (Adaptive Moment Estimation): To update the weights, there are two vectors that keep 

the running average of the gradients and the squared gradients of Adam’s algorithm. This is to ensure 

that for each parameter, ADAM is able to adjust the learning rate while at the same time benefiting 

from momentum to enhance convergence. The reason why Adam is used frequently is because of the 

stability and convergence speed in learning even when dealing with huge data and when used in deeply 

learned structures. 

2.6.  Comparative Studies on Gradient Descent Variants 

Numerous comparative studies have been performed on the basis of varying architectures and datasets 

by testing variants of gradient descent. As for example, Kingma and Ba, (2014) proposed Adam, 

showing that it generally outperformed other optimization methods, such as RMSProp and SGD with 

momentum. Ruder, (2016) also offers a comprehensive view on the most well-known varieties of 

gradient descent and analyzes their strengths and weaknesses for machine learning. 

These works often prove to be helpful, but most are developed based on experiments or analyses 

concerning specific tasks or datasets, so generalization over all architectures of neural networks is not 

possible. Moreover, few studies take into account such important factors as a tradeoff between 

convergence speed, computational cost, and accuracy. 

2.7.  Gaps in Existing Research 

While it might not be surprising that against the backdrop of deluge of research on gradient descent 

variants, scant and scarce systematic comprehensive studies examine these methods at different neural 

architectures and varying datasets, it is even scarcer in the number of studies examining how changes 

in tuning the hyper-parameters lead to differences in performance for these optimizers. This paper will 

attempt to fill these gaps identified above in an effort to present a systematic assessment of gradient 

descent variants in training simple and complex neural networks. 

3. Methodology 

3.1.  Datasets and Neural Network Architectures 

We experimented on several publicly available datasets for the purpose of testing performance in the 

variants of gradient descent. These datasets include: 

MNIST: It stands among those most widely used datasets to benchmark algorithms of image 

classification that consist of scanned handwritten digits. 

CIFAR-10: It consists of about 60,000 color images of size 32x32 in the format of a 10-class 

classification problem and is very popular in current studies on image recognition. 

IMDB: The dataset of 50,000 movie reviews; such datasets are quite often used to demonstrate the 

machine learning in natural language processes, particularly in tasks related to the sentiment analysis 

of movie reviews. 
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The above datasets are both simple and complex architectures on neural networks: the MNIST 

dataset using a simple feedforward neural network, the CIFAR-10 dataset using a convolutional neural 

network, and the IMDB dataset using a recurrent neural network with long short-term memory units. 

3.2.  Gradient Descent Variants 

Among the gradient descent variants, the following were experimented with 

- SGD: The base optimizer, with and without momentum. 

-AdaGrad: Adaptive gradient method, specifically created for sparse data. 

It has many variations like RMSProp, which is a variant of AdaGrad and keeps a running average of 

squared gradients. 

Adam Momentum + RMSProp It is used in most deep learning applications. 

3.3.  Hyper parameter Tuning 

For each of the optimizers, we used a grid search for optimal hyper-parameters. Such parameters as 

learning rate and batch size have been used, along with the momentum coefficient for SGD with 

momentum. All hyper parameter-space searches were structured similarly to this: 

- Learning rate: [0.001, 0.01, 0.1] 

- Batch size: [32, 64, 128] 

- Momentum coefficient (for SGD): [0.5, 0.9] 

The hyper parameters are identified based on the convergence speed and final accuracy on the validation 

set. 

3.4.  Evaluation Metrics 

Performance of each optimizer was tested on the following metrics : 

1. Convergence speed is the number of epochs it takes to reach a specified threshold of accuracy. 

2. Final accuracy: how well the model does on the test set. 

3. Computational efficiency: All the time used in training the model. 

4. Results 

4.1.  Convergence Speed 

As seen in Table 1, the convergence rate for each of the optimizers is very different depending on the 

dataset and architecture used. While Adam converged the fastest on all the tasks, the difference was 

more stark for CIFAR-10 and IMDB. RMSProp also was reasonably competitive but far more slower 

than Adam in most the cases.  

Optimizer  Dataset (MNIST) Dataset (CIFAR-10) Dataset (IMDB) 

Adam Fastest  Fastest  Fastest  

RMSProp Moderate  Moderate  Moderate  

SGD Slow  Slow  Slow  

SGD with Momentum Fast  Moderate  Moderate  

Table 1: Comparison of Gradient Descent Variants - Convergence Speed 

Source :   Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. 

arXiv preprint arXiv:1412.6980. 
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SGD without momentum was significantly the worst; it was often much slower than its competitors 

even to achieve the same level of accuracy. But SGD with momentum scaled up hugely for the 

convergence speed on the MNIST dataset. 

4.2.  Final Accuracy 

In the case of accuracy, the final accuracy, Adam and RMSProp outperform the other optimizers against 

all the dataset. On the CIFAR-10 dataset, 91% accuracy was achieved by Adam, which achieved 89% 

by RMSProp, while that was at 85% for SGD with momentum. Accuracy on IMDB was 88% by Adam, 

while that was 86% by RMSProp and 80% by SGD with momentum.  

Optimizer  MNIST Accuracy (%) CIFAR-10 Accuracy 

(%) 
 

IMDB Accuracy 

(%) 
 

Adam 98% 91% 88% 

RMSProp 
 

97% 89% 86% 

SGD 85% 83% 80% 

SGD with 

Momentum 
 

88% 85% 82% 

Table 2: Final Accuracy Achieved by Optimizers 

Source : Ruder, S. (2016). An overview of gradient descent optimization algorithms. 

arXiv preprint arXiv:1609.04747. 

AdaGrad implemented well on MNIST gave an accuracy of 98%, though it performed poorly on the 

complex datasets like CIFAR-10 and IMDB due to its learning rate falloff. 

4.3.  Computational Efficiency 

As regards the computational efficiency, Adam and RMSProp were the most time-efficient optimizers, 

with the former permitting training of the models less time than SGD and AdaGrad. However, SGD 

with momentum is the least computationally intensive method as it does not require additional inherent 

computations associated with adaptive learning rates. 

Optimizer Computational Efficiency (Training Time) 

Adam Most Efficient 

RMSProp 
 

 Efficient 

SGD Less  Efficient 

SGD with Momentum Moderate  

Table 3: Computational Efficiency of Gradient Descent Variants 

Source : Dogo, E. M., Afolabi, O. J., Nwulu, N. I., Twala, B., & Aigbavboa, C. O. (2018). A 

comparative analysis of gradient descent-based optimization algorithms on convolutional neural 

networks. In 2018 International Conference on Computational Techniques, Electronics, and 

Mechanical Systems (CTEMS) (pp. 92-99). IEEE. 

 Therefore, for practitioners who have limited computational resources, SGD with momentum may 

constitute a sensible compromise between convergence speed and a lack of computational efficiency. 
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5. Discussion 

5.1.   A Comparison of Optimizers  

The findings obtained in this study clearly establish Adam as the most stable and fast learning algorithm 

for training neural networks, especially when the model complexity increases and when using a large 

dataset size. Fast convergence is another advantage because, by appropriate weighting of all the 

parameters, it is able to achieve accurate results. Another optimization algorithm is RMSProp, which is 

outstanding but is most often slightly less efficient than Adam. SGD with momentum is a feasible 

solution to deal with such problems, yet it comes with its drawbacks, which include the learning rate 

and the momentum coefficient.  

5.2. Impact of Hyperparameters  

The selection of hyperparameters, especially the learning rate and the size of the batches, has a great 

impact on the convergence of gradient descent variants. The smaller value of the batch size is more 

suitable for the optimizers such as SGD as it receives more frequent updates, while the larger value of 

the batch size is better suited for the optimizers like Adam and RMSProp that use learning rates that 

adapt on their own. Further, the learning rate has to be set optimal for each optimizer to avoid over-

training on the data or converging slowly.  

5.3.   Practical Implications  

For the use by practitioners on deep learning problems, Adam is preferred because of the stability, the 

computational cost, and the applicability of the optimization over steep loss surfaces. Nevertheless, in 

situations where calculations are a concern, full-batch gradients with momentum are not the only 

options since SGD with momentum provides a much simpler yet effective method of searching for 

optimum with reasonable tuning.  

5.4.  Limitations and Suggestions for Future Research  

A deficiency of this analysis is that only the simplest neural network models were taken into 

consideration. Future work would require running experiments on more complex structures of the type 

transformers or deep recurrent neural networks to further expound the effectiveness of these kinds of 

optimization methods. Further, it is imperative that future research incorporate the best features of 

diverse gradient descent’s variations and create a new one with superior attributes.  

6. Conclusion 

6.1. Summary of Findings  

The difference between various gradient descent variants has been discussed in detail in this study with 

regards to neural network training. Therefore, Adam considers it one of the most effective optimizers, 

outcompeting all the other optimizers in terms of faster convergence and high accuracy in all the 

datasets and structures of the neural networks. RMSProp also did well, and stochastic gradient descent 

with momentum was a valid simple solution to the problem. AdaGrad, although it’s good on the MNIST 

dataset, is not good on more complex tasks because of the constant diminishing learning rate.  

6.2.  Recommendations for Practitioners  

The basic configuration for most deep learning tasks and the one we recommend is the Adam optimizer. 

However, in situations where we are restricted by the availability of computational power, SGD with 

momentum or RMSProp might be a computationally advantageous option. It is also important for 

practitioners to properly choose the learning rate and the batch size that will create the best environment 

for these optimizers.  
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6.3. Future Research Directions  

The same should be done for other variants of gradient descent for more complex models like 

transformers or deep-recursive neural networks; also, there exists potential in a combination of different 

optimization methods. Also, the same literature should look into how hyperparameter tuning affects the 

efficiency of available optimizers in real-life tasks.  
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