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ABSTRACT 
Partial shading in photovoltaic (PV) systems poses a significant challenge to energy harvest efficiency, 
often causing disproportionate power losses that far exceed the physical area under shade. This paper 
presents a novel approach to mitigate these effects through an intelligent dynamically reconfigurable PV 
array system. The proposed solution integrates advanced hardware architecture using silicon carbide 
switching matrices with a multi-layered control system that combines computer vision for shadow 
detection, long short-term memory (LSTM) networks for shadow movement prediction, and hybrid particle 
swarm optimization with artificial neural network (PSO-ANN) algorithms for maximum power point 
tracking. Experimental results from a 3 kW test system demonstrate that the reconfigurable array achieves 
a 20.9% increase in annual energy yield compared to conventional string inverter systems and a 5.1% 
improvement over module-level power electronics solutions. The performance advantage is most 
pronounced during challenging operating conditions such as winter months, early morning/late afternoon 
periods, and partially cloudy days. Economic analysis reveals that despite higher initial costs, the 
reconfigurable array system achieves the lowest levelized cost of electricity ($0.085/kWh) with an 
acceptable payback period of 8.86 years. Thanks to built-in machine learning tools, solar power systems 
are now performing impressively well even outside the lab—in actual outdoor environments—without 
much drop in efficiency. This study shows that using smart, predictive reconfiguration methods makes solar 
setups more adaptable to problems like partial shading. What does that mean? We can now install solar 
panels in places that were once considered less ideal, and still get great results. It also means better returns 
on investment for existing solar installations, making solar energy more practical and profitable than ever. 
Keywords: Partial Shading, Photovoltaic (PV) Systems, Dynamic Reconfiguration, Silicon Carbide 
Switching Matrices, Computer Vision, Shadow Detection, LSTM (Long Short-Term Memory) Networks 
1. INTRODUCTION 
 Solar photovoltaic (PV) technology has quickly become one of the most exciting and widely 
adopted renewable energy sources. It’s clean, sustainable, and—thanks to falling costs—more accessible 
than ever before [1]. In fact, global PV installations have skyrocketed, jumping from just 40 GW in 2010 
to over 760 GW by 2020 [2]. But even with this impressive growth, PV systems still face a few hurdles. 
One of the biggest? Partial shading [3]. 
Partial shading happens when some parts of a solar panel array get less sunlight than others. This could be 
due to things like passing clouds, tall buildings, nearby trees, or even dust and debris building up on the 
panels [4]. At first glance, it might seem like a small problem, but it can cause surprisingly big drops in 
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performance—much worse than you'd expect based on the shaded area alone [5]. In fact, if just 10-20% of 
an array is shaded, it can lead to power losses as high as 70-80% [6]. 
So, why does this happen? Well, it has to do with how PV modules are wired together. Most of them are 
connected in series, meaning the whole string of panels is only as strong as its weakest link. If one section 
isn’t getting enough sun, it pulls the performance of the whole system down to its level [7]. This creates 
multiple peaks in the power-voltage (P-V) curve, but only one of them is the true maximum power point 
(GMPP) [8]. Unfortunately, most traditional maximum power point tracking (MPPT) systems aren’t smart 
enough to find that global peak—they often stop at a local maximum instead, leaving energy on the table 
[9]. 
Partial shading doesn’t just cut efficiency, though. It can also cause hot spots—areas where shaded cells 
start operating in reverse and generate heat instead of electricity [10]. That extra heat wears out the cells 
faster, leading to a shorter lifespan for the whole module [11]. From a financial perspective, the impact is 
pretty serious. Some estimates suggest that partial shading can reduce the total energy output of a solar 
setup over its lifetime by anywhere from 10% to 25% [12]. 
 Over the years, researchers have come up with several smart ways to tackle the issue of partial 
shading in solar systems. These strategies typically fall into two main categories: hardware-based and 
software-based solutions [13]. On the hardware side, innovations like module-level power electronics 
(MLPEs)—including DC power optimizers and microinverters—have been developed to help panels work 
more independently and efficiently [14]. Other solutions involve reconfigurable PV arrays that can adjust 
their layout on the fly [15], or improved solar module designs that come with built-in bypass diodes to 
reduce the impact of shading [16]. 
On the software front, the focus has been on creating more intelligent MPPT (maximum power point 
tracking) algorithms. These are designed to zero in on the true global maximum power point (GMPP), even 
when shading creates a complex web of local peaks and valleys in the power output [17]. 
Lately, breakthroughs in computational intelligence have unlocked even more powerful tools. We’re talking 
about machine learning models, evolutionary algorithms, and hybrid systems that can detect shading in real 
time and adjust the solar setup accordingly [18]. Forecasting has also come a long way—predictive control 
models can now tweak system settings in advance, based on upcoming weather patterns or shading trends 
[19]. 
Even with all these advancements, partial shading is still a stubborn challenge. What makes it so tricky is 
the wide variety of real-world installations—from small rooftop systems to massive utility-scale solar 
farms—each facing different shading issues [20]. On top of that, as solar panels are increasingly paired 
with battery storage and integrated into smart grids, the shading problem gets even more complex. Solving 
it now requires more than just clever wiring—it demands a system-wide approach [21]. 

So, this paper dives deep into the most up-to-date techniques for improving PV performance under 
partial shading. We’ll look at both tried-and-tested methods and cutting-edge ideas, analyzing how well 
they actually work in different settings and whether they make financial sense. Plus, we’re introducing a 
new hybrid model that blends advanced hardware with smart control algorithms. This dynamic system 
could be a major step forward in dealing with shading—keeping solar panels working smarter, not harder. 
2. MATERIALS AND METHODS 
2.1 Experimental Setup 
 The experimental investigations were conducted using a test system comprising polycrystalline 
silicon PV modules with nominal power output of 250 W each under standard test conditions (STC: 
irradiance of 1000 W/m², AM 1.5 spectrum, and cell temperature of 25°C) [22]. A total of 12 modules were 
arranged in a 4×3 configuration, forming a 3 kW array. Each module consisted of 60 cells (156 mm × 156 
mm) connected in series with three bypass diodes, with each diode protecting 20 cells [23]. The modules 
were mounted on an adjustable racking system oriented due south with a tilt angle of 30° to optimize annual 
energy yield at the test location (latitude 34.05°N) [24]. 
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 To accurately evaluate the performance under various shading scenarios, an automated shading 
system was developed using opaque panels mounted on programmable linear actuators. This setup allowed 
precise control over the position, size, and shape of shadows cast on the PV array [25]. Solar irradiance was 
measured using calibrated pyranometers (accuracy ±2%) placed at multiple points across the array to 
capture spatial variations [26]. Module temperatures were monitored using thermocouples attached to the 
back surface of each module, with an accuracy of ±0.5°C [27]. 
 Electrical measurements were performed using a high-precision data acquisition system (National 
Instruments PXIe-1078, 18-bit resolution) with specialized PV measurement cards capable of 
simultaneously sampling voltage and current at a rate of 50 kHz [28]. This system was interfaced with a 
custom-designed electronic load capable of operating in constant voltage, constant current, or constant 
power modes with a maximum capacity of 5 kW [29]. 
2.2 Shading Patterns and Testing Protocols 
 A comprehensive set of shading patterns was defined to represent common real-world scenarios. 
These included: 

1. Edge shading: Progressive shading from one edge of the array (0-100% in 10% increments) [30] 
2. Diagonal shading: Shadows cast diagonally across the array, affecting modules in different strings 

[31] 
3. Scattered shading: Random patterns simulating the effect of clouds or scattered objects [32] 
4. Static vs. dynamic shading: Both fixed shadows and moving shadows with controlled transition 

rates [33] 
 For each pattern, measurements were taken under three different irradiance conditions (200, 600, 
and 1000 W/m²) to evaluate the impact of overall light intensity on the partial shading effect [34]. Testing 
was conducted during clear sky conditions to minimize the influence of natural irradiance variations, with 
all artificial shading applied in addition to any ambient conditions [35]. 
 Each test configuration was maintained for a minimum of 15 minutes after stabilization to ensure 
thermal equilibrium, with data logging at 1-second intervals [36]. Between configuration changes, the 
system was returned to unshaded operation until thermal equilibrium was re-established to prevent 
carryover effects from previous tests [37]. 
2.3 Proposed Hardware Configuration 
Our study implemented and evaluated three distinct hardware configurations: 
2.3.1 Conventional String Inverter System 
 The baseline configuration consisted of the PV array connected to a commercial string inverter 
(SMA Sunny Tripower 5000TL-US, 98% CEC efficiency) with a conventional perturb and observe (P&O) 
MPPT algorithm [38]. This setup represented the most common configuration in existing PV installations, 
serving as a reference for performance comparison. 
2.3.2 Module-Level Power Electronics (MLPE) System 
 The second configuration employed DC power optimizers (SolarEdge P400) connected to each 
individual module, interfacing with a compatible string inverter (SolarEdge SE3000H) [39]. These power 
optimizers perform module-level MPPT and communication, allowing each module to operate at its 
individual maximum power point regardless of other modules in the string [40]. 
2.3.3 Novel Reconfigurable PV Array 
 The proposed innovative configuration incorporated a dynamically reconfigurable interconnection 
system using solid-state switching matrices based on silicon carbide (SiC) MOSFETs with low on-
resistance (RON < 20 mΩ) [41]. This system enabled real-time adjustment of the array topology (series-
parallel connections) in response to detected shading patterns [42]. The switching matrix was designed with 
redundant channels to ensure fault tolerance and was thermally managed using phase-change material heat 
sinks to handle switching losses [43]. 
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2.4 Control System Architecture 
2.4.1 Sensing and Data Acquisition 
 A distributed sensor network was implemented to provide real-time monitoring of key parameters: 

1. Electrical parameters: Individual module voltage and current measurements (100 Hz sampling rate) 
[44] 

2. Environmental parameters: Module-level temperature sensors, ambient temperature, wind speed, 
and irradiance measurements [45] 

3. Optical sensing: A network of low-resolution (0.3 MP) optical sensors with fish-eye lenses 
mounted above the array to detect shadow positions [46] 

 Sensor data was aggregated through a hierarchical communication network using RS-485 protocol 
for local connections and transmitted to the central controller via a secure WiFi connection (IEEE 802.11ac) 
[47]. 
2.4.2 Shade Detection Algorithm 
 A novel image processing algorithm was developed to analyze data from the optical sensors and 
identify shadow boundaries on the PV array [48]. The algorithm employed a sequence of processing steps: 

1. Image pre-processing: Distortion correction, noise reduction, and contrast enhancement [49] 
2. Thresholding: Adaptive thresholding based on local irradiance conditions [50] 
3. Edge detection: Modified Canny edge detection optimized for shadow boundaries [51] 
4. Shadow mapping: Transformation of image coordinates to physical array coordinates using a 

calibrated homography matrix [52] 
 The algorithm achieved a spatial resolution of approximately 5 cm on the array surface with a 
processing latency under 200 ms, allowing near real-time shadow tracking [53]. 
2.4.3 Intelligent Control System 
The core of our proposed solution was an intelligent control system integrating multiple algorithms: 

1. Hybrid MPPT Algorithm: A fusion of particle swarm optimization (PSO) and artificial neural 
network (ANN) approaches to efficiently track the global maximum power point under complex 
shading patterns [54]. The PSO component provided robust global search capabilities, while the 
ANN component accelerated convergence by learning from historical data [55]. 

2. Dynamic Reconfiguration Controller: A reinforcement learning algorithm based on deep Q-
networks (DQN) that determined optimal array configurations based on current shading patterns 
and historical performance data [56]. The controller was trained offline using simulated shading 
scenarios and refined online through continuous operation [57]. 

3. Predictive Shading Model: A time-series forecasting system using long short-term memory 
(LSTM) networks to predict short-term (1-30 minute) shadow movements based on current shadow 
trajectories and historical patterns [58]. This allowed preemptive reconfiguration before significant 
power losses occurred [59]. 

 These components were integrated within a hierarchical control architecture with three operational 
levels: 

1. Reactive Control (100 ms response time): Fast MPPT adjustments to immediate electrical changes 
[60] 

2. Tactical Control (1-5 second response time): Array reconfiguration based on current shadow 
conditions [61] 

3. Strategic Control (30-second updates): Predictive optimization based on forecasted shadow 
movements [62] 

 The control system was implemented on a hybrid computing platform combining a main 
microcontroller (ARM Cortex-A72) for general operations with a field-programmable gate array (FPGA) 
accelerator for time-critical calculations such as shadow detection and MPPT optimization [63]. 
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2.5 Performance Evaluation Metrics 
System performance was evaluated using a comprehensive set of metrics: 

1. Instantaneous Power Recovery Ratio (IPRR): The ratio of actual power output under partial 
shading to the theoretical maximum power available from unshaded cells [64] IPRR = P_actual / 
P_theoretical_max 

2. Shading Tolerance Index (STI): A normalized measure of system resilience to different shading 
percentages [65] STI = (∫P_shaded dt) / (∫P_unshaded × (1-S) dt) where S represents the shaded 
fraction of the array 

3. Reconfiguration Efficiency (RE): The ratio of energy gained through reconfiguration to the 
energy consumed by the reconfiguration process [66] RE = (E_with_reconfig - 
E_without_reconfig) / E_reconfig_consumed 

4. Economic Performance Indicators: Standard financial metrics including levelized cost of 
electricity (LCOE), payback period, and internal rate of return (IRR), calculated using local 
electricity rates and system costs [67] 

2.6 Simulation Framework 
 In parallel with physical experiments, a detailed simulation framework was developed to extend 
the analysis to a wider range of scenarios. The simulation was implemented in MATLAB/Simulink with 
the following components: 

1. PV Module Model: A five-parameter single-diode model with temperature and irradiance 
dependence, individually calibrated to match the characteristics of the physical modules used in the 
experiment [68] 

2. Partial Shading Model: A spatial irradiance model capable of simulating complex, time-varying 
shadow patterns including soft shadows with diffuse boundaries [69] 

3. Power Electronics Model: Detailed switching-level models of inverters, power optimizers, and 
the reconfiguration matrix, including conduction and switching losses [70] 

4. Control Algorithm Implementation: Accurate digital representations of all control algorithms 
with appropriate sampling rates and computational delays [71] 

 The simulation framework was validated against experimental data for a subset of shading 
scenarios, achieving agreement within ±3% for power output predictions under various conditions [72]. 
2.7 Statistical Analysis 
 Performance data was analyzed using a combination of parametric and non-parametric statistical 
methods. The Shapiro-Wilk test was used to verify normality of the data distribution [73]. For normally 
distributed data, paired t-tests were used to compare performance between different configurations, while 
the Wilcoxon signed-rank test was applied for non-normally distributed data [74]. Statistical significance 
was established at p < 0.05, with Bonferroni correction applied for multiple comparisons [75]. 
 Long-term performance projections were generated using Monte Carlo simulations (10,000 
iterations) incorporating historical weather data and derived shading patterns to account for seasonal 
variations and stochastic components of real-world operation [76]. Confidence intervals (95%) were 
calculated for all key performance indicators to quantify the uncertainty in the results [77]. 
RESULTS 
3.1 Performance under Different Shading Patterns 
 The experimental and simulation results revealed significant differences in the performance of the 
three PV system configurations when subjected to various shading conditions. Table 1 summarizes the 
normalized power output (as a percentage of theoretical maximum) for each configuration under the tested 
shading scenarios. 
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Table 1.  Normalized power output (%) under different shading patterns. 
Shading 
Pattern 

Shaded Area 
(%) 

Conventional String 
Inverter 

MLPE 
System 

Reconfigurable 
Array 

Edge Shading 10 68.4 ± 2.3 89.2 ± 1.8 92.7 ± 1.5  
25 51.2 ± 2.5 74.6 ± 2.1 81.3 ± 1.9  
50 32.7 ± 1.9 49.8 ± 2.3 56.4 ± 2.0 

Diagonal 10 55.3 ± 2.2 85.4 ± 1.7 90.8 ± 1.6  
25 35.1 ± 2.4 72.3 ± 2.0 78.5 ± 1.8  
50 19.2 ± 1.7 46.5 ± 2.2 53.9 ± 2.1 

Scattered 10 46.8 ± 2.6 84.7 ± 1.9 89.5 ± 1.7  
25 28.5 ± 2.3 70.4 ± 2.2 77.2 ± 1.9  
50 15.3 ± 1.8 45.8 ± 2.4 52.6 ± 2.2 

 The data demonstrates that the conventional string inverter configuration experienced the most 
severe power losses under all shading conditions, with output reductions disproportionately larger than the 
shaded area percentage. For instance, with just 25% scattered shading, the conventional system retained 
only 28.5% of its unshaded power output, representing a loss magnification factor of approximately 2.9 
[78]. 

 
Figure 1: A bar chart comparing normalized power output across the three configurations for each 

shading pattern and percentage, with error bars representing the standard deviations. 
 Both the MLPE system and the proposed reconfigurable array significantly mitigated these losses, 
with the reconfigurable array consistently outperforming the MLPE system across all test conditions. The 
performance advantage of the reconfigurable array was most pronounced under diagonal and scattered 
shading patterns, which typically create the most challenging conditions for conventional systems due to 
their impact across multiple strings [79]. 
3.2 Dynamic Shading Response 
 To evaluate real-time adaptation capabilities, dynamic shading tests were conducted wherein 
shadows were moved across the array at controlled speeds. Figure 1 illustrates the time-series response of 
each configuration to a shadow moving diagonally across the array at a rate of 10 cm/min. 
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Figure 2: A line graph showing power output over time for all three configurations during a 30-

minute dynamic shading test, with annotations indicating shadow positions at key points. 
The transient response characteristics for each system configuration are summarized in Table 2. 
Table 2. Transient response metrics under dynamic shading conditions. 

Metric Conventional 
String Inverter 

MLPE 
System 

Reconfigurable 
Array 

Average Power Recovery Time (s) 43.5 ± 5.2 8.7 ± 1.3 3.2 ± 0.8 
Power Oscillation Amplitude (%) 18.7 ± 3.1 5.4 ± 1.1 2.8 ± 0.7 
Minimum Power Dip (% of steady-state) 64.2 ± 4.7 12.5 ± 2.3 8.3 ± 1.5 
Energy Loss During Transitions (Wh/transition) 12.3 ± 1.8 3.2 ± 0.6 1.5 ± 0.4 

 The reconfigurable array demonstrated superior dynamic performance, with significantly faster 
recovery times and reduced power oscillations during shadow transitions [80]. The predictive capabilities 
of the control system were particularly effective, initiating reconfiguration sequences approximately 2.3 
seconds before shadow boundaries reached new modules, thereby minimizing transition losses [81]. 
3.3 MPPT Performance Under Partial Shading 
 The effectiveness of the hybrid MPPT algorithm implemented in the reconfigurable array was 
evaluated by analyzing its ability to locate and maintain operation at the global maximum power point 
(GMPP) under complex shading conditions. Table 3 presents key performance indicators for the MPPT 
algorithms in each configuration. 

Table 3. MPPT performance metrics under partial shading conditions. 
Metric Conventional P&O 

(String Inverter) 
Perturb & Observe with 
Module-Level 
Implementation (MLPE) 

Hybrid PSO-ANN 
(Reconfigurable Array) 

GMPP Tracking 
Success Rate (%) 

37.2 ± 5.3 89.6 ± 3.2 98.4 ± 1.5 

Average 
Tracking Time 
(s) 

8.5 ± 1.7 4.3 ± 0.8 1.2 ± 0.3 

Steady-State 
Oscillation (%) 

2.1 ± 0.4 1.3 ± 0.3 0.6 ± 0.2 

Power Extraction 
Efficiency (%) 

68.3 ± 4.5 91.8 ± 2.7 96.7 ± 1.8 

 The hybrid PSO-ANN algorithm demonstrated a remarkable 98.4% success rate in identifying the 
true global maximum power point under various shading conditions, compared to 89.6% for the MLPE 
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system and only 37.2% for the conventional inverter [82]. Moreover, the tracking time was significantly 
reduced, allowing the system to respond more rapidly to changing environmental conditions. 

 
Figure 3: A 3D surface plot showing the P-V curves under a complex shading scenario, with 

markers indicating the operating points selected by each MPPT algorithm. 
 Analysis of the tracking trajectories revealed that the learning component of the hybrid algorithm 
effectively guided the particle swarm toward promising regions of the search space, reducing the number 
of iterations required to converge on the GMPP by an average of 64% compared to standard PSO 
implementations [83]. 
3.4 Reconfiguration Efficiency and Switching Performance 
 A critical aspect of the reconfigurable array's performance is the efficiency of its switching 
operations. Table 4 presents the analysis of switching performance and associated energy costs. 

Table 4. Switching performance and energy consumption metrics. 
Metric Value 
Average Switching Time (μs) 4.8 ± 0.3 
Switching Losses per Operation (mJ) 3.2 ± 0.5 
Average Daily Reconfiguration Events 87.3 ± 12.5 
Daily Energy Consumption for Switching (Wh) 7.8 ± 1.1 
Reconfiguration Efficiency (RE) 42.5 ± 5.3 

 The energy consumed by switching operations was found to be minimal, accounting for 
approximately 0.08% of the daily energy production of the system under typical operating conditions [84]. 
The Reconfiguration Efficiency (RE) of 42.5 indicates that for each unit of energy invested in 
reconfiguration operations, approximately 42.5 units of additional energy were harvested that would 
otherwise have been lost due to mismatch effects [85]. 
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 Figure 4: A scatter plot showing Reconfiguration Efficiency values against shading severity, 
with different markers for different shading patterns. 
 The adaptive scheduling algorithm successfully minimized unnecessary switching operations, with 
76.4% of reconfigurations occurring during significant irradiance transitions (morning, evening, or cloud 
movements) and only 23.6% during relatively stable conditions [86]. 
3.5 Shade Detection Accuracy 
 The performance of the optical shade detection system was quantified by comparing its output with 
ground-truth shading patterns measured using the distributed irradiance sensor network. Table 5 
summarizes the detection accuracy metrics. 

Table 5. Shade detection system performance metrics. 
Metric Low Irradiance 

Conditions (< 300 W/m²) 
Medium Irradiance 
(300-700 W/m²) 

High Irradiance (> 
700 W/m²) 

Shadow Position 
Accuracy (cm) 

7.3 ± 1.2 5.1 ± 0.8 3.5 ± 0.6 

Shadow Edge Detection 
Success Rate (%) 

92.3 ± 3.5 96.7 ± 2.1 98.4 ± 1.5 

False Positive Rate (%) 4.2 ± 1.1 2.5 ± 0.7 1.1 ± 0.4 
Processing Latency (ms) 185 ± 12 172 ± 9 165 ± 8 

 The shade detection system maintained high accuracy across different irradiance conditions, though 
performance was slightly degraded under low light conditions due to reduced contrast between shaded and 
unshaded regions [87]. The average position error of 5.1 cm under typical operating conditions was well 
within the acceptable range for effective reconfiguration, as it represented less than half the width of a 
single cell [88]. 
3.6 Energy Yield Improvement 
 Long-term energy yield projections were calculated based on experimental results and historical 
weather data for the test location. Table 6 presents the annual energy yield comparison between the three 
system configurations. 
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Table 6. Projected annual energy yield for a 3 kW system at the test location. 
Month Conventional 

String Inverter 
(kWh) 

MLPE 
System 
(kWh) 

Reconfigurable 
Array (kWh) 

Improvement 
Over 
Conventional 
(%) 

Improvement 
Over MLPE 
(%) 

January 268.4 322.6 339.5 26.5 5.2 
February 295.7 348.3 364.7 23.3 4.7 
March 387.2 445.3 465.8 20.3 4.6 
April 426.5 487.2 508.9 19.3 4.5 
May 475.8 534.6 559.7 17.6 4.7 
June 492.3 547.5 573.6 16.5 4.8 
July 487.9 540.3 568.2 16.5 5.2 
August 467.4 525.8 554.3 18.6 5.4 
September 412.6 473.5 498.7 20.9 5.3 
October 363.8 428.7 451.2 24.0 5.2 
November 292.5 354.6 374.8 28.1 5.7 
December 252.3 309.7 328.5 30.2 6.1 
Annual 
Total 

4622.4 5318.1 5587.9 20.9 5.1 

 The reconfigurable array system showed a significant annual energy yield improvement of 20.9% 
compared to the conventional string inverter and 5.1% compared to the MLPE system [89]. The 
improvement was more pronounced during winter months (November through February) when shadows 
are longer due to the lower solar elevation angle and more likely to cause significant cross-string shading 
patterns [90]. 

 
 Figure 5: A stacked bar chart showing monthly energy production for each configuration, 
with percentage improvements annotated. 
3.7 Economic Analysis 
 The economic implications of the performance improvements were assessed using standard 
financial metrics. Table 7 presents the economic analysis results based on current component costs and 
local electricity rates. 
Table 7. Economic performance comparison (3 kW residential system). 

Metric Conventional String 
Inverter 

MLPE 
System 

Reconfigurable 
Array 

Initial System Cost ($) 5,850 6,975 7,425 
Annual Energy Production 
(kWh) 

4,622 5,318 5,588 
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Annual Electricity Value ($) 693 798 838 
Levelized Cost of Electricity 
($/kWh) 

0.092 0.088 0.085 

Simple Payback Period (years) 8.44 8.74 8.86 
Net Present Value ($)* 4,968 5,824 6,125 
Internal Rate of Return (%) 10.2 9.8 9.6 

 *Calculated with 4% discount rate, 25-year system lifetime, and 2.5% annual electricity price 
escalation 
 Although the reconfigurable array had the highest initial cost among the three configurations, its 
superior energy harvest resulted in the lowest levelized cost of electricity (LCOE) at $0.085/kWh [91]. The 
slightly longer payback period (8.86 years vs. 8.44 years for the conventional system) was offset by the 
higher net present value over the system lifetime, indicating better long-term economic performance [92]. 
 Sensitivity analysis revealed that the economic advantage of the reconfigurable array was most 
significant for locations with high electricity rates (>$0.18/kWh) or installations with substantial shading 
challenges, where the simple payback period could be reduced to as little as 7.3 years [93]. 

 
 Figure 6: A line graph showing the cumulative cash flow over a 25-year period for all three 
configurations, highlighting the break-even points. 
3.8 System Reliability and Maintenance 
 Reliability testing and accelerated aging experiments were conducted to evaluate the long-term 
durability of the switching components. Table 8 summarizes the projected reliability metrics. 
Table 8. Reliability and maintenance projections. 

Metric Value 
Switching Matrix MTTF (hours) 131,400 ± 15,200 
Projected Annual Failure Rate (%) 0.67 ± 0.12 
Estimated Service Intervals (years) 5.2 ± 0.8 
Impact on System Availability (%) 99.87 ± 0.05 
Additional Maintenance Cost ($/year) 18.50 ± 3.75 

 The mean time to failure (MTTF) for the switching matrix was estimated at 131,400 hours 
(approximately 15 years of continuous operation), indicating robust reliability [94].  Factoring in the 
additional maintenance requirements, the reconfigurable array was projected to maintain a system 
availability of 99.87%, comparable to conventional PV systems [95]. 
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 The modular design of the switching matrix allowed for selective replacement of individual 
components, reducing the lifetime maintenance cost compared to full system replacement. The projected 
additional maintenance cost of $18.50 per year represented only 2.2% of the annual electricity value 
generated by the system [96]. 
3.9 Environmental Factors and Performance Correlation 
 Multivariate analysis was performed to identify correlations between environmental factors and 
system performance differences. Table 9 presents the correlation coefficients between key environmental 
parameters and the performance advantage of the reconfigurable array (measured as the percentage 
improvement over the conventional system). 

 
Table 9. Correlation between environmental factors and performance advantage. 

Environmental Factor Correlation Coefficient (r) p-value 
Ambient Temperature 0.12 0.35 
Wind Speed -0.08 0.42 
Humidity 0.17 0.28 
Cloud Cover 0.76 < 0.001 
Diffuse/Direct Radiation Ratio 0.82 < 0.001 
Time of Day (hours from solar noon) 0.63 < 0.001 
Season (winter vs. summer) 0.58 < 0.001 

 Strong positive correlations were observed between the performance advantage of the 
reconfigurable array and both cloud cover (r = 0.76) and the diffuse/direct radiation ratio (r = 0.82) [97]. 
This indicates that the reconfigurable array provides the greatest benefit during partially cloudy conditions 
when dynamic shading is most prevalent. 
 The time of day also showed a moderate positive correlation (r = 0.63), with the largest performance 
improvements occurring during early morning and late afternoon when shadows are longer [98]. Seasonal 
variation was also significant (r = 0.58), with winter months showing greater relative improvements due to 
the lower solar elevation angle [99]. 
3.10 Machine Learning Model Performance 
 The performance of the machine learning components in the control system was evaluated 
separately to assess their contribution to overall system efficiency. Table 10 summarizes the prediction 
accuracy of the key ML models. 
Table 10. Machine learning model performance metrics. 

Model Application Accuracy 
Metric 

Training Set 
Performance 

Validation Set 
Performance 

Production 
Performance 

CNN Shadow Detection IoU Score 0.937 0.912 0.884 
LSTM Shadow 

Movement 
Prediction 

RMSE (cm) 3.2 4.5 5.7 

DQN Reconfiguration 
Strategy 

Reward 
Optimization 
(%) 

94.8 92.3 89.7 

ANN MPPT Support Classification 
Accuracy (%) 

97.5 95.8 94.2 

 The convolutional neural network (CNN) used for shadow detection achieved an intersection over 
union (IoU) score of 0.884 in production conditions, indicating high accuracy in identifying shadow 
boundaries [100]. The LSTM model for shadow movement prediction maintained acceptable accuracy with 
a root mean square error (RMSE) of 5.7 cm, enabling proactive reconfiguration [101]. 
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 The deep Q-network (DQN) responsible for reconfiguration decisions achieved 89.7% of the 
theoretical maximum reward in production, demonstrating effective learning of optimal switching strategies 
[102]. Finally, the artificial neural network (ANN) supporting MPPT maintained a classification accuracy 
of 94.2% for identifying global maxima regions in complex P-V curves [103]. 
 The performance gap between training and production environments was within acceptable limits 
for all models, indicating good generalization capabilities and robustness to real-world variations not 
captured in the training data [104]. 
Discussion 
4.1 Interpretation of Performance Improvements 
 The experimental results demonstrate that the proposed reconfigurable array system significantly 
outperforms both conventional string inverter and MLPE configurations under partial shading conditions. 
The 20.9% annual energy yield improvement over conventional systems observed in this study is consistent 
with findings by Tian et al. [105], who reported improvements ranging from 15-25% using dynamic 
reconfiguration techniques, albeit with more limited switching topologies. Our results also align with the 
theoretical predictions by Velasco-Quesada et al. [106], who suggested that ideal reconfiguration strategies 
could recover up to 23.7% of energy otherwise lost to shading effects. 
 However, the 5.1% improvement over MLPE systems is notable and extends beyond the 2-3% 
advantage reported in previous studies [107, 108]. This enhanced performance can be attributed to three 
key innovations in our approach: (1) the integration of predictive shadow movement modeling, (2) the use 
of high-efficiency SiC switching components with minimal losses, and (3) the implementation of multi-
level control architecture that optimizes decisions across different time scales. 
 The performance advantage was particularly pronounced during winter months and at times when 
shadows moved across module boundaries, situations where conventional bypass diode protection and 
module-level optimization are inherently limited. This observation supports the findings of MacAlpine et 
al. [109], who identified cross-module shading as a persistent challenge even for advanced MLPE systems. 
4.2 MPPT Performance in Complex Shading Scenarios 
 The hybrid PSO-ANN MPPT algorithm achieved a 98.4% success rate in identifying the true global 
maximum power point under partial shading conditions, significantly outperforming conventional 
techniques. Traditional P&O algorithms have been consistently reported to struggle with multiple power 
peaks, with success rates typically below 40% in complex shading scenarios [110, 111]. Our findings align 
with those of Sundareswaran et al. [112], who demonstrated PSO-based methods could achieve tracking 
success rates of approximately 95% in simulated environments, though our implementation extends this 
performance to real-world conditions. 
 The integration of ANN-based acceleration represents an important advancement over pure 
metaheuristic approaches. Previous studies by Rizzo et al. [113] and Chao et al. [114] investigated neural 
network support for MPPT but achieved more modest improvements in convergence time (30-40% 
reduction). Our system's 64% reduction in convergence iterations compared to standard PSO aligns more 
closely with the theoretical limits proposed by Gupta et al. [115], who suggested that ideal hybrid systems 
could reduce tracking time by 60-70% through effective domain knowledge incorporation. 
 The steady-state oscillation reduction to 0.6% represents another significant improvement over 
both conventional (typically 2-3% [116]) and pure PSO implementations (reported at 1-1.5% [117]). This 
stability is particularly important for grid integration, as power fluctuations can propagate through the 
distribution network and potentially trigger stability issues in high-penetration PV scenarios [118]. 
4.3 Dynamic Reconfiguration Strategy 
 The reconfiguration strategy implemented in this study differs fundamentally from previous 
approaches by prioritizing shadow boundary management rather than attempting to create uniform 
irradiance groups. Earlier work by Storey et al. [119] and Patnaik et al. [120] focused on irradiance 

https://dira.shodhsagar.com/


Darpan International Research Analysis 
ISSN: 2321-3094  |  Vol. 13  |  Issue 2  |  Apr - Jun 2025 
Peer Reviewed & Refereed   
 

28 
  

© 2025 Published by Shodh Sagar. This is an open access article distributed under the terms of the Creative Commons License  
[CC BY NC 4.0] and is available on https://dira.shodhsagar.com  

equalization, which while theoretically sound, requires excessive switching operations in real-world 
dynamic shading conditions. 
 Our approach, which achieved a reconfiguration efficiency (RE) of 42.5, significantly outperforms 
the RE values of 15-25 reported in previous studies [121, 122]. This efficiency improvement can be 
attributed to the implementation of reinforcement learning for switch decision-making, which optimizes for 
long-term energy yield rather than instantaneous power output. As noted by Wang et al. [123], optimizing 
instantaneous power can lead to excessive switching and diminishing returns, particularly in rapidly 
changing environmental conditions. 
 The adaptive scheduling algorithm's success in concentrating 76.4% of reconfigurations during 
significant irradiance transitions aligns with recommendations by Kouchaki et al. [124], who identified 
these periods as offering the highest potential benefit-to-cost ratio for topology adjustments. This selective 
approach preserves switching component lifespan while maintaining performance benefits, addressing a 
key concern raised by Romano et al. [125] regarding the longevity of reconfigurable systems. 
4.4 Shade Detection and Prediction Innovation 
 The optical shade detection system developed in this study represents a significant advancement 
over conventional electrical parameter monitoring approaches. Previous studies by El-Dein et al. [126] and 
Pareek et al. [127] relied on electrical signatures to infer shading patterns, achieving position accuracies of 
approximately 15-20 cm under ideal conditions. Our system's average position error of 5.1 cm under typical 
operating conditions provides much finer granularity for reconfiguration decisions. 
 The integration of LSTM-based predictive modeling for shadow movement further distinguishes 
our approach from reactive systems described in the literature. While Camarillo et al. [128] demonstrated 
the potential for shadow prediction using weather-based models, their approach was limited to large-scale 
temporal predictions (hours ahead) rather than the fine-grained spatial predictions (minutes ahead) achieved 
in our system. The RMSE of 5.7 cm in shadow position prediction enables proactive reconfiguration that 
prevents, rather than responds to, mismatch losses. 
 The correlation analysis between environmental factors and performance advantage provides 
important insights for system deployment. The strong relationship with diffuse/direct radiation ratio (r = 
0.82) is consistent with findings by Rodrigo et al. [129], who identified this parameter as a key indicator of 
partial shading impact. However, our observation of a strong correlation with cloud cover (r = 0.76) 
contrasts with conclusions by Ibrahim et al. [130], who suggested cloud-induced shading was too transient 
to be effectively addressed through reconfiguration. Our results indicate that modern high-speed switching 
and predictive algorithms can indeed capture value even in these challenging conditions. 
4.5 Economic Viability and Market Positioning 
 The economic analysis reveals that despite higher initial costs, the reconfigurable array system 
achieves the lowest levelized cost of electricity (LCOE) at $0.085/kWh. This finding challenges the 
conventional wisdom that additional hardware complexity necessarily increases lifetime energy costs. 
Comstock et al. [131] previously estimated that reconfiguration capabilities would increase LCOE by 
approximately 5% due to additional components and maintenance, but our implementation actually reduced 
LCOE by 3.4% compared to conventional systems and 7.6% compared to projections from their model. 
 The payback period of 8.86 years, while slightly longer than the conventional system (8.44 years), 
still falls within the range considered acceptable by most residential consumers according to market surveys 
[132]. More importantly, the higher net present value indicates that the technology provides superior 
lifetime returns, which aligns with broader industry trends toward prioritizing long-term performance over 
initial cost [133]. 
 Sensitivity analysis showing enhanced economic benefits in high-value markets (electricity rates 
>$0.18/kWh) or heavily shaded installations suggests a clear market positioning strategy. This finding is 
consistent with economic models by Feldman et al. [134], who identified topology optimization as 
particularly valuable in these market segments. The additional annual maintenance cost of $18.50 represents 
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just 2.2% of the electricity value generated, comparing favorably to the 3-5% maintenance overhead 
typically associated with advanced PV systems [135]. 
4.6 Reliability Considerations 
 The reliability assessment of the switching matrix, with a projected MTTF of 131,400 hours, 
addresses a critical concern regarding reconfigurable systems. Previous studies have identified reliability 
as a potential barrier to adoption, with Singh et al. [136] suggesting that frequent switching operations could 
reduce system lifespan by 20-30%. Our results indicate that modern semiconductor devices, combined with 
intelligent switching algorithms that minimize unnecessary operations, can largely mitigate this concern. 
 The estimated service interval of 5.2 years aligns with typical inverter maintenance schedules [137], 
allowing the additional components to be serviced concurrently without imposing new maintenance 
requirements. The projected system availability of 99.87% matches industry standards for conventional PV 
systems [138], indicating that the additional complexity does not compromise overall reliability. 
 The modular design approach, allowing selective replacement of individual components, represents 
an important advancement over early reconfigurable prototypes that required complete subsystem 
replacement upon failure [139]. This approach significantly reduces lifetime maintenance costs and aligns 
with the industry trend toward serviceability as a key design criterion for renewable energy systems [140]. 
4.7 Machine Learning Integration 
 The performance of the machine learning components provides insights into the practical 
application of AI techniques in solar energy systems. The CNN model for shadow detection maintained an 
IoU score of 0.884 in production environments, which aligns with the performance reported by Nguyen et 
al. [141] for similar computer vision applications in controlled settings (IoU ≈ 0.9). This indicates that 
sophisticated vision algorithms can be successfully deployed in variable outdoor conditions without 
significant performance degradation. 
 The LSTM model's shadow prediction performance (RMSE = 5.7 cm) is particularly noteworthy 
given the complexity of the task. Previous attempts at PV-specific time series forecasting by Dolara et al. 
[142] achieved normalized RMSE values of approximately 12-15% for short-term predictions. Our system's 
performance represents a substantial improvement, likely due to the integration of both optical and electrical 
inputs into the prediction model. 
 The DQN controller achieved 89.7% of theoretical maximum reward in production environments, 
comparing favorably with similar reinforcement learning applications in energy systems. Cao et al. [143] 
reported performance of 82-87% in solar-plus-storage control applications, suggesting that our 
implementation successfully addresses the unique challenges of reconfiguration control. 
 The relatively small performance gap between training and production environments (typically 3-
6% across models) indicates good generalization capabilities. This contrasts with earlier studies by Zhang 
et al. [144] and Mishra et al. [145], which reported degradation of 10-15% when deploying machine 
learning models in real-world solar energy applications. Our improved generalization can be attributed to 
the comprehensive training approach incorporating historical data across multiple seasons and weather 
conditions. 
4.8 Integration with Broader Energy Systems 
 While this study focused primarily on the PV system itself, the implications for grid integration 
merit discussion. The improved predictability and stability of power output from the reconfigurable array 
addresses concerns raised by Palmintier et al. [146] regarding the impact of intermittent PV generation on 
distribution networks. The reduced power oscillations during shadow transitions (2.8% vs. 18.7% for 
conventional systems) could significantly ease the burden on voltage regulation equipment in high-
penetration PV scenarios. 
 The predictive capabilities of the system also create opportunities for enhanced grid services. By 
accurately forecasting short-term production changes, the system could potentially provide advanced 
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notification to grid operators or local energy management systems, a capability identified by Lave et al. 
[147] as increasingly valuable for distribution system operation. 
 Furthermore, the reconfiguration technology could synergize effectively with storage systems. 
Studies by von Appen et al. [148] and Hanna et al. [149] have demonstrated that even modest improvements 
in PV predictability can significantly reduce the battery capacity required for firming output. The shadow 
prediction capabilities developed in this study could potentially reduce required battery capacity by 15-20% 
in residential PV-plus-storage systems affected by partial shading. 
4.9 Limitations and Future Work 
 Despite the promising results, several limitations of the current study must be acknowledged. First, 
the experimental period encompassed only one calendar year, potentially missing longer-term seasonal 
variations or rare weather events that might affect relative performance. Long-term studies by Jordan et al. 
[150] have demonstrated that PV system performance patterns can shift over multi-year periods due to 
factors such as vegetative growth and environmental soiling patterns. 
 Second, the system was evaluated at a single geographic location with specific weather patterns 
and solar resource characteristics. While the simulation framework attempted to generalize the findings, 
actual performance in different climates may vary. Research by Huld et al. [151] has shown that regional 
climate factors can significantly influence the relative performance of different PV technologies and 
configurations. 
 Third, the economic analysis used current component costs, which may not accurately reflect future 
market conditions. The cost trajectory of switching electronics and control systems could evolve differently 
from traditional PV components, potentially changing the economic calculus. Projections by Feldman et al. 
[152] suggest that advanced power electronics may experience accelerated cost reductions compared to 
module and structural components. 
 Future work should address these limitations through multi-site, multi-year deployments across 
diverse geographic and climatic regions. Additionally, several promising avenues for technical 
enhancement have been identified: 

1. Integration with bifacial modules, which introduce additional complexity through rear-side 
irradiance variations but may offer synergistic benefits with reconfiguration strategies [153] 

2. Exploration of topology optimization for solar-plus-storage systems, potentially enabling more 
sophisticated energy management strategies that consider both instantaneous and future energy 
availability [154] 

3. Development of distributed control architectures that reduce computational requirements while 
maintaining performance, enabling cost-effective implementation in smaller systems [155] 

4. Investigation of alternative switching technologies such as gallium nitride (GaN) transistors, which 
offer potential improvements in switching speed and losses compared to the silicon carbide devices 
used in this study [156] 

5. Expansion of machine learning capabilities to incorporate weather forecast data, potentially 
extending prediction horizons from minutes to hours and enabling integration with day-ahead 
electricity markets [157] 

 These enhancements could further increase the performance advantage of reconfigurable arrays 
and expand their applicability across different market segments and system scales. 
4.10 Implications for PV System Design and Standards 
 The findings of this study have several implications for PV system design practices and industry 
standards. Current design approaches typically focus on minimizing shading through site selection and 
layout optimization, with limited consideration of active mitigation strategies [158]. The performance 
improvements demonstrated by the reconfigurable array suggest that it may be economically advantageous 
to accept some shading conditions if they enable other benefits such as increased array size or better 
building integration. 
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 This shift in design philosophy aligns with recent trends in building-integrated photovoltaics 
(BIPV), where aesthetic and structural considerations often compete with optimal solar access [159]. 
Reconfigurable topologies could significantly expand the viable applications for BIPV by reducing the 
performance penalty associated with architectural constraints. 
 Industry standards for PV system performance modeling, such as those developed by Deline et al. 
[160], currently include detailed models for conventional and MLPE systems but lack frameworks for 
evaluating dynamic reconfiguration benefits. The methodology and metrics developed in this study, 
particularly the Reconfiguration Efficiency (RE) parameter, could inform the development of standardized 
approaches for assessing such technologies. 
 Similarly, grid interconnection standards focused on power quality and ramp rate limitations may 
need to evolve to recognize the enhanced capabilities of systems with predictive control. As noted by Ding 
et al. [161], existing standards often assume worst-case behavior from distributed generation, potentially 
imposing unnecessary constraints on advanced systems capable of more grid-friendly operation. 
 The demonstrated reliability and maintenance requirements also suggest that concerns about 
complexity and serviceability, while valid for early prototypes, should not be considered fundamental 
barriers to adoption. Industry education and updated maintenance protocols could address these concerns, 
as has occurred with previous technological transitions such as the shift from central to string inverters 
[162]. 
CONCLUSION 
 In conclusion, this study demonstrates that dynamic photovoltaic array reconfiguration, when 
implemented with appropriate hardware components and intelligent control strategies, represents a viable 
and effective approach to mitigating the effects of partial shading. The technology has matured to a point 
where performance benefits, economic returns, and reliability characteristics all support broader adoption 
in commercial and residential applications. As the solar energy industry continues to evolve, such advanced 
management techniques will play an increasingly important role in maximizing energy harvest and 
accelerating the global transition to renewable energy. 
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