An inclusive study of LISC and Kaggle White blood cell Classification using YoloV5 Variants.

Authors

  • Vandita Sharma Research Scholar, Baba MastNath University, Asthal Bohar, Rohtak Haryana, India
  • Dr. Tilak Raj Rohilla Assistant Professor, Baba MastNath University, Asthal Bohar, Rohtak Haryana, India

DOI:

https://doi.org/10.36676/dira.v13.i1.158

Keywords:

LISC, Kaggle White blood cell Classification, YoloV5

Abstract

White blood cell (WBC) is crucial in human being for their immunity, genetic association, clinical significance , but it plays a vital role in medical diagnosis, particularly in the cure and real time monitoring of a variety of blood diseases. Any Infection in the body can be easily detected by doing count of WBC sub types. Traditional WBC cataloguing procedures are time-consuming and prone to human error.

YolovV5 is a model that is prominent for its precision, versatility and availability of pre-trained weights, making it a popular choice among both novices and professionals. YoloV5 allows to employ it in different domains by adjusting the model architecture, such as adding more layers, changing the head or backbone, or training it on a new dataset by changing the hyperparameters. YOLOv5 is tested to tackle a array of object identification problems in fields such as agriculture, medicine, and transportation.

Our study explores variant of YOLOv5 e.g., YOLOv5n, YOLOv5s, YOLOv5m, and YOLOv5l on small set training dataset evenly distributed among all the subtypes of WBC blood cell such as neutrophils, basophils, eosinophils, monocytes, and lymphocytes further analysing which model performs better in terms of Accuracy, recall and mAP@50 and mAP@50-95, parameters used, model size accuracy and inference speed and resource utilization e.g., CPU, network and memory. Here are some of the question that our study tires to answer: Which model variant performs best at each stage of training?  This is a different comparison because it focuses on model variants, not epoch counts. Is longer training worth the computational cost?

References

Rohaziat, N., Md Tomari, M. R., & Wan Zakaria, W. N. (2022). White Blood Cells type Detection using YOLOv5. 1–6. https://doi.org/10.1109/ROMA55875.2022.9915690

Zhang, D., Bu, Y., Chen, Q., Cai, S., & Zhang, Y. (2024). TW-YOLO: An Innovative Blood Cell Detection Model Based on Multi-Scale Feature Fusion. Sensors, 24(19), 6168. https://doi.org/10.3390/s24196168

Coşkun, D., Karaboğa, D., Baştürk, A., Akay, B., Nalbantoğlu, Ö. U., Doğan, S., Paçal, İ., & Karagöz, M. A. (2023). A comparative study of YOLO models and a transformer-based YOLOv5 model for mass detection in mammograms. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 31(7), 1294–1313. https://doi.org/10.55730/1300-0632.4048

Kim et al “EfficientNet-YOLO: Lightweight Architecture for Blood Cell Detection", 2021

Xu, F., Li, X., Yang, H., Wang, Y., & Xiang, W. (2021). TE-YOLOF: Tiny and efficient YOLOF for blood cell detection. Biomedical Signal Processing and Control, 73, 103416. https://doi.org/10.1016/j.bspc.2021.103416

Rahman et al "A Comparative Study of YOLO Variants for Microscopic Blood Cell Detection" 2023

Alshdaifat, N., Abu Owida, H., Mustafa, Z., Aburomman, A., Abuowaida, S., Ibrahim, A., &Alsharafat, W. (2024). Automated blood cancer detection models based on EfficientNet-B3 architecture and transfer learning. Indonesian Journal of Electrical Engineering and Computer Science, 36(3), 1731. https://doi.org/10.11591/ijeecs.v36.i3.pp1731-1738

] M. R. Islam, Y. L. Moullec, F. Afrin and F. Ahmed, "Deep-Learning based Blood Cells Classification and Initial Edge Device Implementation," 2022 18th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 2022, pp. 1-6, doi: 10.1109/BEC56180.2022.9935610. keywords: {Training;White blood cells;Computationalmodeling;Microscopy;Transferlearning;Cells (biology);Minimization;DeepLearning;Single Board Computer;Clas-sification;Blood Cell Images},

Chawla, N. V., Bowyer, K. W., Hall, L. O., &Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953

. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014, June 10). Generative adversarial networks. arXiv.org. https://arxiv.org/abs/1406.2661

Talukdar, K., Bora, K., Mahanta, L. B., & Das, A. K. (2022). A comparative assessment of deep object detection models for blood smear analysis. Tissue and Cell, 76, 101761. https://doi.org/10.1016/j.tice.2022.101761

Ahmadsaidulu, S., Tiwari, A., Neelapu, B. C., Jain, P., & Banoth, E. (2024). Advancing Leukocyte Classification: A Cutting‐Edge Deep Learning Approach for AI‐Driven Clinical Diagnosis. International Journal of Imaging Systems and Technology, 34(6). https://doi.org/10.1002/ima.23204

Sharma, V., Bhardwaj, A., Mishra, R. C., Kumar, B., Shivam, Y., Nimrani, G., Upadhyay, C. K., & Shukla, P. (2024). Optimization on Yolov5 to Improve Accuracy for Classification of White Blood Cells (pp. 461–469). Springer Nature. https://doi.org/10.1007/978-981-99-5435-3_33

Luong, D. T., Anh, D. D., Thang, T. X., Huong, H. T. L., Hanh, T. T., & Khanh, D. M. (2022). Distinguish normal white blood cells from leukemia cells by detection, classification, and counting blood cells using YOLOv5. 156–160. https://doi.org/10.1109/ATiGB56486.2022.9984098

Tarimo, S. A., Jang, M., Ngasa, E. E., Shin, H. B., Shin, H., & Woo, J. (2023). WBC YOLO-ViT: 2 Way - 2 stage white blood cell detection and classification with a combination of YOLOv5 and vision transformer. Computers in Biology and Medicine, 169, 107875. https://doi.org/10.1016/j.compbiomed.2023.107875

Sarkar, J., Ahmadsaidulu, S., & Banoth, E. (2022). Classification and Detection of White Blood Cells using Enhanced YOLOv5 Algorithm. Frontiers in Optics + Laser Science 2022 (FIO, LS). https://doi.org/10.1364/fio.2022.jw4b.46

Song, X., & Tang, H. (2024). Blood Cell Target Detection Based on Improved YOLOv5 Algorithm. https://doi.org/10.20944/preprints202410.1892.v1

Tarimo, S. A., Jang, M.-A., Ngasa, E. E., Shin, H. B., Shin, H., & Woo, J. (2023). WBC YOLO-ViT: 2 Way - 2 stage white blood cell detection and classification with a combination of YOLOv5 and vision transformer. Computers in Biology and Medicine. https://doi.org/10.1016/j.compbiomed.2023.107875

Cao, L., Li, M., Li, W., Liu, L., Yang, S., & Fang, X. (2022). White blood cell detection based on improved YOLOv5s. 12306, 1230613. https://doi.org/10.1117/12.2641313

Jeneessha, P., Kumar, B. V., & Murugappan, M. (2024). WBC-KICNet: Knowledge-infused convolutional neural network for white blood cell classification. Machine Learning: Science and Technology. https://doi.org/10.1088/2632-2153/ad7a4e

Downloads

Published

2025-01-15
CITATION
DOI: 10.36676/dira.v13.i1.158
Published: 2025-01-15

How to Cite

Vandita Sharma, & Dr. Tilak Raj Rohilla. (2025). An inclusive study of LISC and Kaggle White blood cell Classification using YoloV5 Variants. Darpan International Research Analysis, 13(1), 1–17. https://doi.org/10.36676/dira.v13.i1.158

Issue

Section

Articles

Categories