Characterization and Validation of PAM4 Signaling in Modern Hardware Designs
DOI:
https://doi.org/10.36676/dira.v11.i1.72Keywords:
PAM4 signaling, hardware design, high-speed communication, signal characterization, validation techniques, signal integrity, data throughputAbstract
To satisfy rising data capacity and bandwidth demands, Pulse Amplitude Modulation with 4 levels (PAM4) has become a popular signaling system in high-speed digital communication. As contemporary hardware designs restrict Non-Return-to-Zero (NRZ) signaling, PAM4 offers an appealing alternative by doubling data flow within the same bandwidth. Using PAM4 signaling provides distinct characterisation and validation problems that must be addressed to assure dependable performance in modern hardware systems.
Modern hardware designs' PAM4 signaling characterisation and validation are covered in this research report. PAM4 signaling fundamentals, including modulation technique, signal integrity, and high-speed data transfer, are examined in the research. PAM4's higher data rates and spectrum efficiency are highlighted in the article, along with its implementation issues. Much of the study characterizes PAM4 signaling. This involves developing reliable signal measuring methods, analyzing signal loss owing to ISI and jitter, and assessing PAM4 performance based on hardware components. PAM4 signal behavior under diverse settings is characterized using advanced methods as eye diagram analysis, constellation diagram evaluation, and error vector magnitude (EVM) measurement. The paper tests and simulates PAM4 signaling to validate it. A thorough approach for testing PAM4 performance in lab and real-world conditions is provided. PAM4 signaling resilience in different hardware contexts is tested using specialist test equipment and simulation tools. The validation method includes BER, SNR, and industry standard compliance.
The study also examines how new hardware design affects PAM4 signaling. Advanced circuit design, packaging, and material qualities affect signal integrity and performance. High-speed data interface designers and engineers may learn from the paper's ideas for reducing signal degradation and improving PAM4 signaling in complicated hardware systems.
References
Kumar, S., Shailu, A., Jain, A., & Moparthi, N. R. (2022). Enhanced method of object tracing using extended Kalman filter via binary search algorithm. Journal of Information Technology Management, 14(Special Issue: Security and Resource Management challenges for Internet of Things), 180-199.
Harshitha, G., Kumar, S., Rani, S., & Jain, A. (2021, November). Cotton disease detection based on deep learning techniques. In 4th Smart Cities Symposium (SCS 2021) (Vol. 2021, pp. 496-501). IET.
Jain, A., Dwivedi, R., Kumar, A., & Sharma, S. (2017). Scalable design and synthesis of 3D mesh network on chip. In Proceeding of International Conference on Intelligent Communication, Control and Devices: ICICCD 2016 (pp. 661-666). Springer Singapore.
Kumar, A., & Jain, A. (2021). Image smog restoration using oblique gradient profile prior and energy minimization. Frontiers of Computer Science, 15(6), 156706.
Jain, A., Bhola, A., Upadhyay, S., Singh, A., Kumar, D., & Jain, A. (2022, December). Secure and Smart Trolley Shopping System based on IoT Module. In 2022 5th International Conference on Contemporary Computing and Informatics (IC3I) (pp. 2243-2247). IEEE.
Pandya, D., Pathak, R., Kumar, V., Jain, A., Jain, A., & Mursleen, M. (2023, May). Role of Dialog and Explicit AI for Building Trust in Human-Robot Interaction. In 2023 International Conference on Disruptive Technologies (ICDT) (pp. 745-749). IEEE.
Rao, K. B., Bhardwaj, Y., Rao, G. E., Gurrala, J., Jain, A., & Gupta, K. (2023, December). Early Lung Cancer Prediction by AI-Inspired Algorithm. In 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) (Vol. 10, pp. 1466-1469). IEEE.
Radwal, B. R., Sachi, S., Kumar, S., Jain, A., & Kumar, S. (2023, December). AI-Inspired Algorithms for the Diagnosis of Diseases in Cotton Plant. In 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) (Vol. 10, pp. 1-5). IEEE.
Jain, A., Rani, I., Singhal, T., Kumar, P., Bhatia, V., & Singhal, A. (2023). Methods and Applications of Graph Neural Networks for Fake News Detection Using AI-Inspired Algorithms. In Concepts and Techniques of Graph Neural Networks (pp. 186-201). IGI Global.
Bansal, A., Jain, A., & Bharadwaj, S. (2024, February). An Exploration of Gait Datasets and Their Implications. In 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1-6). IEEE.
Roberts, P., & Evans, H. (2018). OpenShift: Extending Kubernetes for Enterprise Use. Enterprise IT Journal, 15(2), 74-89. https://doi.org/10.1016/j.eitj.2018.03.002
Wong, K., Li, Y., & Chen, M. (2022). Security in Containerized Environments. Journal of Information Security and Applications, 63, 102938. https://doi.org/10.1016/j.jisa.2022.102938
Zhang, Y., & Li, Q. (2020). Resource Management in Container Orchestration Platforms. Journal of Systems and Software, 160, 110513. https://doi.org/10.1016/j.jss.2019.110513
Key Technologies and Methods for Building Scalable Data Lakes", International Journal of Novel Research and Development (www.ijnrd.org), ISSN:2456-4184, Vol.7, Issue 7, page no.1-21, July-2022, Available : http://www.ijnrd.org/papers/IJNRD2207179.pdf
"Exploring and Ensuring Data Quality in Consumer Electronics with Big Data Techniques"", International Journal of Novel Research and Development (www.ijnrd.org), ISSN:2456-4184, Vol.7, Issue 8, page no.22-37, August-2022, Available : http://www.ijnrd.org/papers/IJNRD2208186.pdf
Jain, A., Singh, J., Kumar, S., Florin-Emilian, Ț., Traian Candin, M., & Chithaluru, P. (2022). Improved recurrent neural network schema for validating digital signatures in VANET. Mathematics, 10(20), 3895.
Kumar, S., Shailu, A., Jain, A., & Moparthi, N. R. (2022). Enhanced method of object tracing using extended Kalman filter via binary search algorithm. Journal of Information Technology Management, 14(Special Issue: Security and Resource Management challenges for Internet of Things), 180-199.
Kanchi, P., Jain, S., & Tyagi, P. (2022). Integration of SAP PS with Finance and Controlling Modules: Challenges and Solutions. Journal of Next-Generation Research in Information and Data, 2(2). https://tijer.org/jnrid/papers/JNRID2402001.pdf
Rao, P. R., Goel, P., & Jain, A. (2022). Data management in the cloud: An in-depth look at Azure Cosmos DB. International Journal of Research and Analytical Reviews, 9(2), 656-671. http://www.ijrar.org/viewfull.php?&p_id=IJRAR22B3931
"Continuous Integration and Deployment: Utilizing Azure DevOps for Enhanced Efficiency". (2022). International Journal of Emerging Technologies and Innovative Research (www.jetir.org), 9(4), i497-i517. http://www.jetir.org/papers/JETIR2204862.pdf
• Shreyas Mahimkar, Dr. Priya Pandey, Om Goel, "Utilizing Machine Learning for Predictive Modelling of TV Viewership Trends", International Journal of Creative Research Thoughts (IJCRT), Vol.10, Issue 7, pp.f407-f420, July 2022. Available: http://www.ijcrt.org/papers/IJCRT2207721.pdf
"Exploring and Ensuring Data Quality in Consumer Electronics with Big Data Techniques", International Journal of Novel Research and Development (www.ijnrd.org), Vol.7, Issue 8, pp.22-37, August 2022. Available: http://www.ijnrd.org/papers/IJNRD2208186.pdf
Sumit Shekhar, Prof. (Dr.) Punit Goel, Prof. (Dr.) Arpit Jain, "Comparative Analysis of Optimizing Hybrid Cloud Environments Using AWS, Azure, and GCP", International Journal of Creative Research Thoughts (IJCRT), Vol.10, Issue 8, pp.e791-e806, August 2022. Available: http://www.ijcrt.org/papers/IJCRT2208594.pdf
FNU Antara, Om Goel, Dr. Prerna Gupta, "Enhancing Data Quality and Efficiency in Cloud Environments: Best Practices", International Journal of Research and Analytical Reviews (IJRAR), Vol.9, Issue 3, pp.210-223, August 2022. Available: http://www.ijrar.org/IJRAR22C3154.pdf
Pronoy Chopra, Akshun Chhapola, Dr. Sanjouli Kaushik, "Comparative Analysis of Optimizing AWS Inferentia with FastAPI and PyTorch Models", International Journal of Creative Research Thoughts (IJCRT), Vol.10, Issue 2, pp.e449-e463, February 2022. Available: http://www.ijcrt.org/papers/IJCRT2202528.pdf
Fnu Antara, Dr. Sarita Gupta, Prof. (Dr.) Sangeet Vashishtha, "A Comparative Analysis of Innovative Cloud Data Pipeline Architectures: Snowflake vs. Azure Data Factory", International Journal of Creative Research Thoughts (IJCRT), Vol.11, Issue 4, pp.j380-j391, April 2023. Available: http://www.ijcrt.org/papers/IJCRT23A4210.pdf
"Strategies for Product Roadmap Execution in Financial Services Data Analytics", International Journal of Novel Research and Development (www.ijnrd.org), ISSN:2456-4184, Vol.8, Issue 1, page no.d750-d758, January-2023, Available : http://www.ijnrd.org/papers/IJNRD2301389.pdf
"Shanmukha Eeti, Er. Priyanshi, Prof.(Dr.) Sangeet Vashishtha", "Optimizing Data Pipelines in AWS: Best Practices and Techniques", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.11, Issue 3, pp.i351-i365, March 2023, Available at : http://www.ijcrt.org/papers/IJCRT2303992.pdf
(IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.10, Issue 1, Page No pp.35-47, March 2023, Available at : http://www.ijrar.org/IJRAR23A3238.pdf
Pakanati, D., Goel, E. L., & Kushwaha, D. G. S. (2023). Implementing cloud-based data migration: Solutions with Oracle Fusion. Journal of Emerging Trends in Network and Research, 1(3), a1-a11. https://rjpn.org/jetnr/viewpaperforall.php?paper=JETNR2303001
Swamy, H. (2022). Software quality analysis in edge computing for distributed DevOps using ResNet model. International Journal of Science, Engineering and Technology, 9(2), 1-9. https://doi.org/10.61463/ijset.vol.9.issue2.193
Kumar, A. V., Joseph, A. K., Gokul, G. U. M. M. A. D. A. P. U., Alex, M. P., & Naveena, G. (2016). Clinical outcome of calcium, Vitamin D3 and physiotherapy in osteoporotic population in the Nilgiris district. Int J Pharm Pharm Sci, 8, 157-60.
UNSUPERVISED MACHINE LEARNING FOR FEEDBACK LOOP PROCESSING IN COGNITIVE DEVOPS SETTINGS. (2020). JOURNAL OF BASIC SCIENCE AND ENGINEERING, 17(1). https://yigkx.org.cn/index.php/jbse/article/view/225
Prakash, M., & Pabitha, P. (2020). A hybrid node classification mechanism for influential node prediction in Social Networks. Intelligent Data Analysis, 24(4), 847-871
Bipin Gajbhiye, Shalu Jain, & Om Goel. (2023). Defense in Depth Strategies for Zero Trust Security Models. Darpan International Research Analysis, 11(1), 27–39. https://doi.org/10.36676/dira.v11.i1.70
Kumar Kodyvaur Krishna Murthy, Om Goel, & Shalu Jain. (2023). Advancements in Digital Initiatives for Enhancing Passenger Experience in Railways. Darpan International Research Analysis, 11(1), 40–60. https://doi.org/10.36676/dira.v11.i1.71
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Darpan International Research Analysis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.